Ir al contenido principal

Calculando probabilidades de default

Al analizar la valoración de los Credit Default Swaps (CDS), encontramos que un elemento fundamental para el cálculo es la estimación de la probabilidad de default de la contrapartida de la cual buscamos cubrirnos ante un eventual evento de crédito.

Una forma de estimar esta probabilidad es utilizar el modelo de forma reducida propuesto por Jarrow y Turnbull (1995) que, en resumen, dice que el precio de cualquier flujo financiero (bonos, swaps de tasas de interés, CDS, etc.) puede expresarse como el valor esperado de sus flujos de caja futuros. Este valor esperado puede hallarse multiplicando cada posible flujo de caja futuro por la probabilidad neutral al riesgo de su ocurrencia, donde esta probabilidad viene determinada por el diferencial en las obligaciones con riesgo de incumplimiento. ¿Qué es tan importante es estor? Que se infiere que es posible obtener la probabilidad de default a partir de la curva cupón cero de tipos de interés. Despreciando efectos fiscales y de liquidez, el spread en el rendimiento entre el bono con riesgo y el bono sin riesgo representa dicha probabilidad de default.

Imaginemos dos bonos cupón cero, uno libre de riesgo y el otro con riesgo, con fecha de vencimiento 1 año y el mismo valor facial, y tasas de rendimiento fijas.



El factor de descuento se calcula en forma compuesta discreta como 1/(1+tasa de rendimiento) y el precio es el valor facial por el factor de descuento. La diferencia de precios (1.8854), que es una prima por riesgo, nos dice que existe una probabilidad no nula de que el emisor del bono con riesgo no pague el nominal de 100 cuando llegue la fecha de vencimiento del bono con riesgo.

Para el cálculo de la probabilidad de default se debe conocer de antemano la proporción del principal que en el caso de default se espera cobrar, lo que se llama tasa de recupero, concepto similar al de severidad. Así, definiremos las siguientes variables:

R : Tasa de recupero
π : Probabilidad de default
1-π : Probabilidad de no default

Sólo caben dos posibilidades en este modelo: que haga default o no. La cantidad a recibir es la siguiente:

-Caso de default: 100 x R (con probabilidad π)
-Caso de no default: 100 ( con probabilidad 1-π)

El pago esperado será (1):


El valor actual del pago esperado en un mundo sin riesgo es (2):



Donde r es la tasa cupón cero sin riesgo (el 2% del cuadro inicial). Para que no exista arbitraje en el mercado, la expresión anterior debe ser igual al precio del bono con riesgo:


El precio del bono sin riesgo (100/(1+r) utilizando cálculo compuesto discreto) puede extraerse fácilmente de la parte derecha de la ecuación, tras factorizar el valor facial:


Agrupando la ecuación tenemos:



Finalmente, reacomodando, definiríamos la probabilidad de default (3) como:



Si tomamos el ejemplo numérico del primer cuadro y asumimos un R de 40%, tendríamos el siguiente cálculo de probabilidad de default:


π=0.03205

Podemos avanzar un paso más, expresando los precios de los bonos con riesgo y sin riesgo en forma compuesta continua. Esto es:



Reemplazamos lo anterior en (3):


Simplificando la expresión anterior, y asumiendo un plazo de 1 año, tenemos lo siguiente (4):


La expresión (4) nos revela algo importante: para conocer la probabilidad de default, basta conocer el spread del bono con riesgo sobre el bono sin riesgo (spread sobre la curva soberana) y el ratio de recupero. Esta es una manera muy sencilla de hacer este cálculo, con el que podemos realizar estimaciones de otros indicadores de riesgo sin mayores complicaciones.




Bibliografía
Juan Camilo Arbeláez Zapata y Cecilia Maya Ochoa. “Valoración de Credit Default Swap (CDS): una aproximación con el método Montecarlo”. Medellín: Investigación a cargo de la Universidad EAFIT de Medellín (Colombia). 2007.

Carmen Badía, Merche Galisteo y Teresa Preixenes. “Valoración del crédito default swap: una aplicación del modelo de Hull-White al mercado español”. Barcelona: Documento de trabajo de la Facultad de Ciencias Económicas y Empresariales de la Universidad de Barcelona

Arturo Labanda Puerta. “Derivados de riesgo de crédito. Tipos y utilidades”. Madrid: Documento de trabajo de la Universidad Complutense de Madrid. 2005.

Charles Smithson y Gene D Guill. “Valoración de activos crediticios”. Risk España, marzo 2004. Pág. 30-33.

Comentarios

  1. Me parece que en la última fórmula falta: -spread por plazo

    ResponderEliminar
  2. Es para el caso de un año. Lo menciono en el párrafo que antecede la fórmula.

    ResponderEliminar
  3. Disculpen el e es el numero de Euler lo que pasa es que he tenido problemas para calcularlo en excel

    ResponderEliminar
  4. e=2.7182... En excel normalmente se usa la expresión =exp() para elevar el número e a al número que querramos. En este caso el número e se usa para traer a valor presente usando tasas de descuento continuas.

    ResponderEliminar
  5. A mayor tasa de recupero, el riesgo de default es mayor, por que?

    ResponderEliminar

Publicar un comentario

Entradas populares de este blog

¿Qué es el riesgo financiero?

Para poder ayudarnos mejor en el entendimiento de la definición del riesgo financiero, configuremos tres ejemplos muy sencillos. El primero de ellos es el de un inversionista que ha puesto su dinero en un negocio que, en el tiempo, debe generarle resultados. Este inversionista, por supuesto, aguarda tener cierto nivel de retorno, y tiene la expectativa de un resultado esperado (RE). Pero a pesar de esto, los resultados posibles son múltiples. Algunos de esos resultados pueden ser excelentes y le traerán felicidad al inversionista, pero otros tal vez sean adversos. ¿Serán estos resultados esperados (que tal vez puedan ser negativos) el riesgo? 
Vamos con un segundo ejemplo. Sea un empresario que, en su manejo natural de su negocio, tiene costos. Algunos son grandes, otros son pequeños, todos son variables, pero de cierta manera el empresario puede hacer estimaciones de éstos; en otras palabras, tiene costos esperados (CE). ¿Será acaso el tamaño de estos costos esperados el riesgo? 
Un…

Niño malo

Cuando fue confirmado hace poco tiempo, el Fenómeno del Niño Costero fue una sorpresa para muchos, ya que en diciembre de 2016 la discusión en los medios era la severa sequía que afrontaba muchas regiones del país, mientras ahora, apenas tres meses después, hablamos de inundaciones en extensas áreas del norte sin contar los huaycos en muchos lugares y los destrozos en la infraestructura pública y privada. ¿Pudimos tener algún grado de anticipación ante esta circunstancia?
Las entidades financieras afrontan esta situación crítica de distinta manera. No solo viene por el daño en oficinas y los muchos empleados que se han visto afectados por las lluvias, sino por los numerosos clientes que tendrán problemas con los pagos de los créditos (un incremento del riesgo de crédito). Se realizará una reprogramación natural que ya es alentada por la Superintendencia de Banca y Seguros. La mora, por supuesto, va a crecer, y las estrategias de calce de balance ya no funcionarán en el nuevo escenari…